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Abstract. The key motivation behind this paper is to provide academics and

professionals with an alternative to opaque, but powerful statistical and ML-

based factor models. To achieve this, we present a structured factor model that

combines classical approaches to factor modeling with novel research ideas. This

model relies on three core ideas: regime-conditioning, factor selection, and fac-

tor engineering. The structured nature of our proposed model allows users to

introspect the model end-to-end, gaining detailed insights into its inner work-

ings. Over a cross-section of large-cap, US equities, we find moderate evidence

on the benefits of our proposed model from its forecasting ability, and positive

evidence from its ability to construct optimized portfolios.

§1. Introduction

This Applied Finance Project originated from an industry project on regime detection

and dynamic portfolio construction [11], which provided evidence that regime-dependent

asset allocation leads to portfolios with better risk-return characteristics. Looking towards

the asset management industry, large factor models have been the status quo for many

years in dealing with portfolio construction. These models come with unique challenges,

most notably how to select relevant factors from an ever-increasing universe of factors,

known as the factor zoo, and how to find new factors orthogonal to this factor zoo.

The key motivation behind this paper is to provide an alternative to opaque, but

powerful statistical and ML-based factor models. To that end, we propose a structured

and interpretable factor model. While we find moderate to strong evidence in favor of

our proposed model, the model also represents a general framework that can be used and

extended by academics and professionals to improve existing factor models and test the

marginal usefulness of a new technique, in light of other available techniques.

We aim to expand the research around regime-dependent portfolio construction and fac-

tor models in multiple ways. First, whereas most papers have approached regime-dependent

portfolio construction as an asset or index allocation problem, this paper applies and evalu-

ates models over a large equity cross-section. Second, this paper considers the joint problem

of regime-modeling, factor zoo compression, and finding new factors. Although each of

these has been researched independently, to our knowledge they have not yet been con-

sidered jointly. Finally, this paper proposes a structured and explainable framework as an
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alternative to recent developments in powerful, but opaque ML-based latent factor models.

This paper is structured as follows: Section 1 introduces the research project, delineating

its scope and objectives. Section 2 provides readers with an overview of historical and recent

developments surrounding factor modeling and regime detection. Section 3 outlines the

key concepts and models that represent the building blocks of our proposed factor model.

Section 4 follows up by detailing the structure and implementation of our proposed factor

model. Section 5 gives a brief description of the evaluation data and Section 6 outlines the

high-level evaluation framework. Section 7 presents the evaluation results and highlights the

key insights. Before concluding, Section 8 presents a use case of the interpretable nature of

our proposed factor model. Finally, Section 9 discusses the key findings and extensions to

this project, while Section 10 summarizes the key findings and learnings.

§2. Background Knowledge & Recent Developments

Although some familiarity with factor models, regime detection, and portfolio optimiza-

tion is helpful, this literature review provides all the necessary background knowledge for

this paper. This section focuses on the history, current narrative, and recent research sur-

rounding dynamic factor models. Technical details on the techniques used within this paper

are outlined in Sections 3 and 4, which discuss the key concepts and implementation of the

proposed factor model.

2.1. Factor Models

In its basic form, a factor model is a static, linear model that attempts to explain the

expected return and (systematic) risk of one or more assets. This model can subsequently

be used for various tasks ranging from ex-post performance analysis to ex-ante portfolio

optimization. To enable this, the factor model offers two key outputs, namely an estimated

asset variance-covariance matrix, referred to as the VCV, and an estimated asset expected

excess return vector. Given N assets and L factors, the classical factor model is entirely

defined by five matrices:

1. F: an L× L factor covariance matrix.

2. K: an L×N matrix with the factor loadings for each asset. This matrix is typically

estimated through OLS.

3. D: an N ×N matrix with the residual or idiosyncratic covariance of the assets. This

matrix is often diagonal in which case it contains the idiosyncratic variance of the assets.

4. f : an L× 1 vector with the expected returns for each factor.

5. α: an N × 1 vector with the alpha for each asset.

Combining these five matrices, the asset VCV (Σ̂) and expected excess return vector (µ̂e)

can be estimated as follows:

Σ̂ = KT · F ·K +D

µ̂e = α+KT · f

Following the pioneering results of Fama and French [14], the literature has seen a prolif-

eration of proposed factors, giving rise to the term factor zoo to describe this phenomenon.
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Although factor models were originally proposed to solve many of the numerical issues

that arise from using empirical VCVs over large asset cross-sections, similar issues occur

for large factor VCVs. To address this problem, Swade, et al. [39] compress the factor zoo

by focusing on explaining the available alpha rather than the covariance matrix of factor

returns. This compression exercise shows that in the US, only 15 factors are necessary to

span the 153 factors considered [39].

In contrast to recent research on compressing the factor zoo, the never-ending search for

new factors persists. Latent factor models are a popular tool for this with many innovations

both on statistical models, such as RP-PCA [31], and ML models, such as Factor VAE

[13] and HireVAE [43]. These models have shown good performance on paper, but the

resulting factors are often opaque and non-intuitive, presenting a barrier to using them in

the industry.

2.2. Regime Detection

Below we present a summary of the key literature surrounding regime detection. For a

more in-depth discussion, we refer to our previous industry project on regime-dependent

portfolio construction [11].

Tu provides evidence that there are losses associated with ignoring regime switching

and that accounting for regime switching is substantially independent from incorporating

model and parameter uncertainty in portfolio decisions [41]. Therefore, Tu argues that “the

more realistic regime switching model is fundamentally different from the commonly used

single-state model, and hence should be employed instead in portfolio decisions irrespective

of concerns about model or parameter uncertainty” [41]. In line with Tu’s observations,

there have since been numerous papers that argue for incorporating regime dependency in

investment decisions.

A key assumption behind regime detection is that markets are characterized by a number

of latent, or hidden, regimes, each with their own return generating process. At any point in

time returns are assumed to be generated from one of these regimes. Regime models come

in many flavors, with each model having its own drawbacks and benefits. Broadly speaking,

we group regime models into two categories: parametric and non-parametric models.

Hidden Markov Models (HMM) are a popular parametric model to detect latent regimes

and have been studied in numerous financial applications [19][20][21][42]. At a high level,

an HMM consists of a finite number of states with a fixed set of transition probabilities

from one period to the next between each state. Next to this, each state is associated

with its own returns-generating process, typically represented as a returns-distribution.

For a more detailed explanation on the inner workings of HMMs, please refer to Section 3.

Within the context of dynamic portfolio construction, Bae, et al. [1] and Costa, et al. [8][9]

provide evidence in favor of using HMMs for regime detection.

Advances in machine learning have also led researchers to start investigating non-

parametric models in latent regime detection. Bilokon, et al. [3] suggest using path

signatures on returns time series in combination with a modified K-Means algorithm to



4 Y. D’HONDT, M. DI VENTI, A. GULATI, R. RISHI, AND J. WALKER

detect regimes. In similar fashion, Horvath, et al. [24] suggest a modified K-means algo-

rithm using Wasserstein distance and Wasserstein Barycenters to detect regimes1. Although

these papers offer promising initial results, as evidenced by our ability to construct improved

portfolios using Wasserstein K-Means in our industry project [11], these methods are quite

data-intensive and may be more suitable for higher-frequency analyses with more available

data.

2.3. Dynamic Portfolio Construction

Regime detection adds a new dimension of understanding to market behavior, but

it does not directly offer actionable recommendations. That is where regime-dependent

portfolio construction comes into play. The idea behind regime-dependent portfolio con-

struction is to identify and maximize objectives defined over a regime-switching model of

asset returns. Based on the results of our previous industry project [11], this paper focuses

on regime detection through HMMs.

An important feature of HMMs is that they provide transition probabilities between

different states over time, given their interpretation as a state-transition model. This allows

for stochastic portfolio optimization as regime sequences can be simulated from the fitted

Markov chain. Bae, et al. use stochastic programming to construct optimal portfolios by

maximising a portfolio objective over these sequences. They conclude that “the regime

information helps portfolios avoid risk during left-tail events” [1]. One major drawback of

stochastic programming is that it suffers from the curse of dimensionality and is therefore

time and resource intensive when applied to a broad universe of assets or many states.

To overcome this drawback, Costa, et al. [8] suggest to use a simpler one-period

model. They propose a regime-switching factor model, based on the Fama-French 3 Fac-

tor Model, that fully characterizes the systematic portion of the expected returns and

covariance matrix of an asset universe at each point in time. They provide evidence that

a risk-parity strategy based on this model offers higher returns at a similar ex-post level

of risk compared to its nominal counterpart [8]. In a follow-up paper, Costa, et al. [9]

propose a regime-switching factor model that allows for both systematic and idiosyncratic

regime-dependency. They show that mean-variance optimization (MVO) using this novel

framework consistently displays higher returns and similar or lower volatility than its

nominal counterpart [9].

Another interesting recent development is the one put forward by Garleanu and Pedersen

[16] that introduce factors models trying to optimize the dynamic trading of a portfo-

lio. Under transaction costs and differing speed of mean reversion for signals, the optimal

solution is to blend the current optimal portfolio with the optimal portfolio at next time

steps.

1 Wasserstein distance and Barycenters are concepts from optimal control theory. They provide a mathe-
matically sound framework for defining a metric space between uni- or multivariate distributions, as well
as a method for aggregating distributions within this space.
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§3. Key Concepts & Models

As mentioned in the introduction, we consider the joint problem of regime modeling,

factor selection, and factor engineering. This section introduces the key concepts, models,

and papers on these individual topics. Subsequently, Section 4 builds on this section by

detailing how each of these individual components is combined into a structured, dynamic

factor model.

3.1. Selected Regime Model

Based on the results from our previous industry project [11], this paper employs Gaus-

sian Mixture Model based Hidden Markov Model (GMMHMM) for regime detection.

GMMHMM is relatively robust to overfitting, remains relatively stable during refitting,

and is able to fit a wide range of potentially non-normal distributions, setting it apart from

other regime-models. Furthermore, the empirical results from this industry project [11]

showcase the superiority of GMMHMM within the context of regime-dependent portfolio

optimization.

In general, Hidden Markov Models are a tool to model and forecast time-series data

generated from a number of undetectable, or latent, states. Each state generates data from

a state-dependent distribution. Moreover, the model incorporates a static transition matrix

which describes the probabilities of a state change from one period to the next. A data

generation process for each of the latent states together with a transition matrix defines

an entire HMM model. GMMHMMs are a special case of HMMs which assume that the

state-dependent distributions are represented by Gaussian Mixture Models. Appendix A

offers an in-depth overview of the properties and assumptions behind HMMs.

This paper used hmmlearn to implement GMMHMMs. This package allows for control

over two crucial hyperparameters: the covariance type of each regime’s return distribution

and the emission model. For the covariance type, this paper considers diagonal matrices,

in which every state’s covariance matrix is diagonal. For the emission model, this paper

considers Gaussian Mixture emissions.

3.2. Factor Selection

As modern factor models grow in size, the curse of dimensionality can lead to an increase

in numerical instability. Ideally, a factor model should have fewer factors than the number of

assets in the portfolio, a goal that becomes challenging with models containing 100 or more

factors. This paper partially builds on the work from Swade, et al. [39] and de Prado [10] who

propose solutions to deal with high dimensional factor and asset cross-sections, respectively.

This subsection introduces the relevant ideas from these papers, whereas Section 4 details

their integration into our proposed factor model.

3.2.1. GRS for Factor Selection

The GRS test was originally proposed by Gibbons, Ross, and Shanken in 1989 as a way

to test the ex-ante efficiency of a given portfolio [17]. Since then, the test has become a

popular tool in asset pricing research due to its clearly defined test statistic distribution

and its interpretation as a function of two Sharpe ratios. Nowadays, the GRS test is mainly
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used to test the efficiency or rank the power of multiple factor models against each other.

Swade, et al. use the GRS test in their research to sequentially select factors in a static

factor model [39]. We expand on their research by applying a similar method to our regime-

dependent factor model. Despite the popularity of the GRS test, the original authors

were ambiguous in how the test statistic should be constructed for a multivariate setting,

such as to test multivariate factor models. Kamstra, et al. provide clarity with a detailed

note and proof of the correct GRS test statistic [28]. Unfortunately, many researchers still

use a wrong formulation of the GRS statistic, including Swade, et al. [39]. According to

Kamstra, et al. even though the mistake appears minor, it can lead to over-rejection of

factor models and more importantly misranking between factor models [28]. Appendix B

provides the correct GRS specification used within this paper as per Kamstra, et al. [28].

3.2.2. Hierarchical Clustering of Financial Time Series

Most portfolio optimization techniques rely on Markowitz’s mean-variance optimization

(MVO), quadratic programming, and the estimation of an asset VCV. Although popular,

these techniques can suffer from instability, concentration, and underperformance. de

Prado proposes an alternative portfolio optimization technique called Hierarchical Risk

Parity (HRP) which exploits the network structure of asset returns to overcome the afore-

mentioned issues [10].

This paper draws inspiration from the network representation of asset returns. Given a

universe of assets U of size N , we can think of each asset ai ∈ U as a node in a network.

The network is fully connected as each asset ai is potentially related to each other asset

aj . We can now think of the covariance between every two assets as the edge-relationship

between those two assets. Given that a VCV matrix is symmetrical, it requires the estima-

tion of N(N+1)
2 elements to represent the full network. For large N , this quickly becomes

numerically unstable.

de Prado instead proposes to compress this network structure by performing hierarchi-

cal, agglomerative clustering over a custom asset-distance metric. This distance metric

jointly considers the correlation between each asset and all other assets. The dendrogram

resulting from this clustering finally offers an O(N) representation of the asset-network

versus the O(N2) representation required by an empirical VCV. Appendix C offers a

detailed overview of the asset-distance metric.

de Prado goes on to show how this hierarchical representation of assets can be used

directly for portfolio optimization through the HRP algorithm [10]. Subsequent research has

also investigated how different portfolio objectives can be incorporated into this framework,

such as the HERC algorithm from Raffinot [36], as well as how constraints can be added

to this framework, such as the constrained HRP from Pfitzinger, et al. [34].

3.3. Factor Engineering

While a subset of factors may explain the equity cross-section in each regime, relying

solely on unconditional factors may fail to capture the full scope of the equity cross-section.
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This paper partially builds on the work from Ilic, et al. [25] and Lettau, et al. [31] who

both offer algorithms that can be used or modified for factor engineering. This subsection

introduces the relevant ideas from these papers, whereas Section 4 details their concrete

implementation within this paper’s framework.

3.3.1. Linear Boosting

Linear Boosting, a shorthand for Explainable Boosted Linear Regression (EBLR), is an

iterative two-stage framework for time-series forecasting and non-linear feature generation

proposed by Ilic, et al. [25]. In the first stage, a base learner2 is fitted on the data. In the

second stage, a single decision tree is fitted over the residuals from this base learner. The

decision path leading to the leaf node that explains the largest portion of the residuals is

subsequently encoded as a new binary feature for the base learner. Linear boosting alter-

nates between these two stages, adding new features until some stopping criterion is reached.

EBLR draws upon the fact that regression trees aim to minimize MSE of the target

values in terminal nodes, essentially grouping errors from the same source. Effectively, this

potentially discovers non-linear features which explain a proportion of the errors. There

are multiple hyperparameters in EBLR. For the purpose of this paper, the most important

ones are the number of selected features, the three depth, and the minimum number of

observations in any leaf node. These hyperparameters are crucial in preventing overfitting

as they define the complexity of the generated non-linear features.

The advantage of EBLR over other models is twofold. First, since the non-linear features

are generated from shallow decision trees, they are explainable and intuitive to understand.

Second, EBLR offers a way to incorporate non-linearities in a purely linear model through

feature encoding. As a result standard factor models can simply treat these non-linear

features as any other factor time-series.

3.3.2. RP-PCA

RP-PCA draws from the intuition that standard PCA is not effective at identifying

factors with small variance that still explain the expected returns of the assets well. To

address this issue, Lettau and Pelger [31] develop a penalized PCA method that introduces

an error term for mispricings of the expected returns. The fundamental intuition is that

in asset pricing applications the first moment of the factors is equally as important as the

second moment.

For N assets over T observations with returns X ∈ RT×N , RP-PCA finds a set of factors

F and factor loadings Λ such that the following objective is minimized:

min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(
Xti − FtΛ

⊤
i

)2

︸ ︷︷ ︸
unexplained variation

+γ
1

N

N∑
i=1

(
X̄i − F̄Λ⊤

i

)2

︸ ︷︷ ︸
pricing error

(3.1)

2 In general, any base learner can be used, including non-linear models.
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Note that γ in Eq. (3.1) is a hyperparameter that determines the importance of the pricing

error3. In the special case of γ = −1, RP-PCA is equivalent to standard PCA. According

to Lettau and Pelger, the parameter is best set to higher values to strengthen the signal

of the weak factors and at a comparatively smaller loss of efficiency. More generally, γ

could be treated as any other hyperparameter in a model pipeline and be optimized for

the objective at hand.

3.4. Factor Blending

Fitting a factor model conditional on a specific regime is as simple as fitting it over the

subset of data that falls in that regime. This however leaves the question of how to blend

each regime’s factor model back into a single model. Costa, et al., propose a closed form

solution to this problem [9]. They consider a two-state model, while their technique can

easily be extended to allow for any finite number of regimes. First, the regime-dependent

factor model is defined as follows for N assets, L factors, and 2 states:

ret = It,1(α1 +KT
1 ft,1 + ϵt,1) + I2,t(α2 +KT

2 ft,2 + ϵt,2) (3.2)

Here ret ∈ RN is the asset excess return vector at time t, It,i is an indicator function which

is 1 if time t is in state i and 0 otherwise, αi is the vector of fitted intercepts conditional

on state i, Ki ∈ RL×N are the fitted factor loadings conditional on state i, ft,i ∈ RL are

the factor returns at time t conditional on state i, and finally ϵt,i ∈ RN are the regression

residuals at time t conditional on state i. By utilizing indicator functions for the regimes,

this entire regime-dependent factor model can be fitted through OLS [9].

Costa, et al. then go on to show that under the assumption of normality of the regime-

conditional factor returns and regression residuals, there is a closed form solution to arrive

at a unique estimated expected return vector and asset VCV conditional on today’s regime

[9]. Let γi,j be the probability of moving from state i to state j from this period to the

next. Furthermore, assume that ϵt,i ∼ N(0, Di) and ft,i ∼ N(0, Fi). Di is suggested to be

estimated as the diagonal-matrix of the VCV of the observed regression residuals for state

i, while Fi is suggested to be estimated as the full empirical VCV of the factor returns

for state i. Note that Costa, et al. implicitly assume that factor returns are mean-zero for

each regime and thus might require a demeaning transformation in practice [9]. Given these

assumptions, the asset expected excess return vector and VCV conditional on being in state

i today are given by:

µ̂e
i = γi,1α1 + γi,2α2

Σ̂i = γi,1(K
T
1 F1K1 +D1) + γi,2(K

T
2 F2K2 +D2)

+ γi,1(1− γi,1)α1α
T
1 + γi,2(1− γi,2)α2α

T
2

− γi,1γi,2(α1α
T
2 + α2α

T
1 )

3 Effectively, RP-PCA applies SVD decomposition to find eigenvalues and eigenvectors of the modified
covariance matrix: 1

T
XTX + γX̄X̄T .
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§4. Proposed Factor Model

Is there a benefit to the joint consideration of regime-conditioning, factor compression,

and latent factor discovery? Equipped with the concepts from Section 3, we attempt to

answer this question through the proposal of a structured factor model pipeline. Key to

our proposed model is to maintain a high level of interpretability and explainability in the

estimation process.

Figure 1. : High level structure of the proposed dynamic factor model. This model consists

of three key components, namely: regime detection, factor selection, and factor engineering.

The high level structure of our proposed factor model pipeline can be seen in Figure 1.

Following the methodology suggested by Bae, et al. [1] and Costa, et al. [8][9], our model

begins by dividing historical data into K distinct regimes. Subsequently, for each regime,

we independently apply factor selection and engineering. This way, the model implicitly

allows for the idea that different factors could be important at different points in time,

as alluded to by Swade, et al. [39]. After this step, a linear factor model is fitted for each

regime, using the selected and engineered factors. Finally, each of the regime-dependent

factor models is blended together to arrive at a single estimate for the asset VCV and

expected excess return vector. Implemented as a unified pipeline, this model requires three

synchronized inputs based on date indices: a time-series to fit regimes, a time-series panel

of asset returns, and a time-series panel of factor returns.

In the following sub-sections, we outline the regime model, factor selection, and factor

engineering techniques that we consider within this framework. Each of these three compo-

nents is constructed in isolation such that we can plug and play with different combinations.

Finally, we also outline how we blend the factor models for each regime back into a single

estimate for the asset VCV and expected excess return vector. At the end of this section,
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we also provide a brief overview of each component which can serve as a reference for the

remainder of this paper.

4.1. Regime Model

As mentioned in Section 3.1, GMMHMM is used as the regime model in the proposed

factor model. We fit this model using the daily market factor, Mkt-RF, as described by

Fama-French [15]. Mkt-RF was chosen for its neutrality compared to specific indices such

as the S&P500. This GMMHMM is automatically re-fitted whenever the factor model is

fitted as the Baum-Welch algorithm uses both forward and backward passes through the

data and hence a single fit over the full backtest period would constitute a significant

lookahead bias.

In theory, an HMM can fit an arbitrary number of states, but real-world constraints limit

the number of states. Most importantly, to ensure that the fitted factor VCV is positive

semi-definite, we require T >> L where T is the number of time-steps in the training

sample and L is the number of factors. In cases where HMMs have numerous states, some

states might be too sparse, resulting in T < L. This can cause degenerate factor VCVs in

these states. Next to this, both the factor selection and engineering procedures can be data

hungry, further requiring that each state has sufficient data. Moreover, a low number of

regimes is often sufficient to show improved performance [11]. As a result, this paper only

considers 2 and 3 state systems.

4.2. Factor Selection

Our proposed factor model builds on the idea that different market conditions may

require a distinct number and combination of factors to effectively explain the equity

cross-section. Within this study, we look at three distinct methods to select the relevant

factors in each regime. First, in line with Swade, et al. [39], we develop a sequential factor

selection method that selects one factor at the time, using the GRS test to decide on the

most appropriate factor at each iteration. Next, we develop an agglomerative hierarchical

clustering over factor returns using the correlation-based distance metric defined by de

Prado as part of Hierarchical Risk Parity [10]. Finally, we develop a factor selection method

that selects factors based on their feature importance in a large factor model measured

through Shapley values.

In the following three subsections, we expand on the technical details of each of these

three methods and the objective that they try to achieve.

4.2.1. Sequential Factor Selection With GRS

We slightly modify the factor selection procedure proposed by Swade, et al. [39] (see

Section 3.2.1). Most notably, we apply the correct GRS specification and operate under

a simplified stopping criterion. On a high level, given a large set of factors, the procedure

attempts to find the smallest subset of factors that explains all the alpha of the other factors

in the set. Concretely, the procedure works as follows:

1. Initialize the procedure by setting the CAPM as our current factor model, CFM .

2. For each remaining factor, consider a new factor model consisting of the CFM plus

this new factor.
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3. Compute the GRS statistics for each of those new factor models, using all factors not

included in the new model as the test assets.

4. Rank the new factor models based on their GRS statistic and select the model with

the lowest statistic.

5. Replace the CFM by this selected model.

6. Check the stopping criterion. If it is satisfied, return the CFM as the final model, else

go back to step 2 and repeat until completion.

Different stopping criteria can be employed. In this paper, we adopt a straightforward

criterion: the process stops when a predetermined number of factors have been selected.

4.2.2. Hierarchical Factor Selection

To retain the flexibility of quadratic and constrained optimization, we do not employ

HRP. Rather, we use the agglomerative clustering proposed by de Prado [10] (see Appendix

C) as a tool to reduce a large universe of factors into a smaller subset of representative

factors. Concretely, our hierarchical factor selection procedure works as follows:

1. Given a large universe of factors, F , apply agglomerative clustering over D̃(F )4 using

Ward linkage.

2. Use the resulting dendrogram to return the K coarsest clusters from the dendrogram.

This procedure gives us K clusters of factors which now have to be transformed into

K representative factors for each cluster. For the purposes of this paper, we average the

underlying factors to give rise to a new representative factor for each cluster.

4.2.3. Factor Selection Through Shapley Values

Shapley values were originally introduced as “a value for n-person games” by Lloyd S.

Shapley as a game-theoretical concept to determine the value of each contributor in a

game in the presence of potential costs and benefits of alliances between contributors [37].

In 2017, Shapley values gained a surge of popularity in machine learning (ML) as a model-

agnostic way of determining feature importances through the introduction of SHAP [33].

Without going into excessive detail, SHAP allows for the efficient calculation of feature

importances based on Shapley values. These feature importances subsequently allow ML

researchers to asses the importance of each feature in the presence of all other features.

Given a large universe of factors, we can now use SHAP to determine the importance of

each factor in the presence of all other factors. Concretely, our SHAP based factor selection

proceeds as follows:

1. Given a large universe of L factors, and a universe of N test-assets, construct the

following linear factor model:

rei,t = αi +

L∑
j=1

βj,ifj,t + ϵi,t (4.1)

4 See Appendix C for the definition of this distance matrix.
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Here, rei,t is the excess return of test-asset i at time t, fj,t is the return of factor j at

time t, αi and βj,i are the regression intercept and coefficients for test-asset i, and ϵi,t
are the regression residuals.

2. For the above linear factor model, calculate the feature importance of each factor using

SHAP and scale the resulting vector of feature importances such that they sum to 1.

3. Use the feature importance vector to select the relevant factors.

As with the other models, different selection criteria are possible. For the purposes of

this paper, the K factors with the largest feature importance are selected.

4.3. Factor Engineering

This paper considers two distinct algorithms to construct new regime-dependent factors

as outlined in Section 3.3. First, the Linear Boosting algorithm from Ilic, et al. [25] is used to

build non-linear combinations and transformations of existing factors. Second, the RP-PCA

algorithm proposed by Lettau, et al. [31] is used to find latent factors in the equity cross-

section that are not captured by existing factors. By implementing RP-PCA and Linear

Boosting, both linear and non-linear latent factor models are considered, respectively.

4.3.1. Linear Boosting

Consider the linear factor model from Equation 4.1. This model is used as the base learner

in Linear Boosting as described in Section 3.3.1. This model is specified as a multi-output

linear regression with the factors as independent variables and the asset cross-section as an

N -dimensional dependent variable5. Following the Linear Boosting framework, the original

factor set, F ∈ RT×L, is extended with K new factors, F ′ ∈ RT×K , resulting in a new

factor set, F ∪F ′ ∈ RT×(L+K). This paper uses the linear-tree package from Cerliani [5]

to implement Linear Boosting.

4.3.2. RP-PCA

RP-PCA, outlined in Section 3.3.2 is a special case as it can both act as a factor

selection and a factor engineering tool. First, when applied over a cross-section of factors

to extract the top K RP-PCA factors, it acts as a factor selection tool. This way a large

cross-section of factors is reduced into K new factors which are linear combinations of the

original factors and explain most of the risk and return of the original factors.

Next, RP-PCA can be applied over a cross-section of asset returns to extract the top K

latent factors. In this case, the original factor set, F ∈ RT×L, is extended with the K new

factors, F ′ ∈ RT×K , resulting in a new factors set, F∪F ′ ∈ RT×(L+K). As there are potential

similarities between these RP-PCA factors and the existing factors, it is advisable to perform

a factor selection step afterwards to filter out similar factors. This paper implements RP-

PCA by translating the Matlab source code from Lettau, et al. [31] into Python.

5 Although the source paper uses LASSO as a base learner, the proposed factor model already incorporates
factor selection procedures. As a result, this base learner is fitted through OLS to avoid a double factor
selection.
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4.4. Factor Blending

We build on top of the model proposed by Costa, et al. [9], by relaxing some assumptions

and extending the dynamics of the model. (See Section 3.4 for an overview of the original

model.) First, we do not require the factor returns to be mean-zero as we are interested

in the potential returns-forecasting power of the factors, i.e. we let ft,i ∼ N(µfi , Fi) where

µfi are the expected factor returns in state i. Next, we allow for different factor sets for

each regime, i.e. ft,i ∈ RLi where the number of factors in state i, Li, and the set of factors

is determined by the factor selection and engineering procedures outlined above. While we

retain the factor model’s specification from Eq. (3.2), the resulting output undergoes a slight

modification. Let the asset expected excess return vector within a fixed state i be given by:

µi = αi +KT
i µfi (4.2)

Then for a two-state model, the asset expected excess return vector and VCV conditional

on being in state i today are given by:

µ̂e
i = γi,1µ1 + γi,2µ2 (4.3)

Σ̂i = γi,1(K
T
1 F1K1 +D1) + γi,2(K

T
2 F2K2 +D2)

+ γi,1(1− γi,1)µ1µ
T
1 + γi,2(1− γi,2)µ2µ

T
2

− γi,1γi,2(µ1µ
T
2 + µ2µ

T
1 )

(4.4)

Similar to the model from Costa, et al. [9] this model can easily be extended for more than

two states, as shown in Appendix D.

4.5. Proposed Factor Model Overview

To summarize, the proposed factor model framework consists of four key compo-

nents, each of which is optional, can be combined with the others, and has multiple

implementations:

1. Regime Modeling

(a)Gaussian Mixture Model HMMs over the Fama French market factor, Mkt-RF,

are used to fit historical regimes and partition the data accordingly.

2. Factor Selection

(a) Sequential factor selection based on the GRS statistic.

(b)Factor selection based on Shapley values.

(c) Factor selection based on agglomerative hierarchical clustering defined over

factor covariances.

(d)RP-PCA applied over factor time-series.

3. Factor Engineering

(a) Linear Boosting applied over a linear factor model.

(b)RP-PCA applied over asset return time-series.

4. Factor Blending
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(a)A closed form model defined over regime-dependent factor models and regime

transition-probabilities is used to provide a single asset expected return vector

and VCV as the model output.

Evidently, factor blending hinges on the application of regime modeling. If factor selection

and/or engineering are used in conjunction with regime modeling, then they are always

applied independently to each regime.

This structure innovates on the existing body of literature in numerous ways. First, to

our knowledge this is the first study where each of these components are considered jointly,

using large factor models. This allows us to assess the power of each of these techniques in

light of the availability of the others. Second, to our knowledge, Linear Boosting has not yet

been applied to the problem of identifying novel, non-linear factors. Finally, by providing

a highly structured model, the impact of each step can be isolated and explained ex-post,

something that is highly relevant to industry applications.

§5. Data Description

Three datasets are employed within this paper to evaluate the proposed factor model

from Section 4. First, the Fama-French market factor and risk free rate are retrieved

from Kenneth French’s Data Library [15]. The market factor is used to perform regime

detection and the risk free rate is used to calculate excess returns. Next, the full CRSP

dataset is retrieved from WRDS [44]. This dataset offers a large cross-section of daily

US-based equity returns which will constitute the test assets during model evaluation and

backtesting. Finally, the US large factor model (USFM) recently open-sourced by Jensen,

et al. [26] is retrieved as the principal large factor model used within this paper.

In the remainder of this section, the key data cleaning steps performed for this research

are outlined. The data retrieved from Kenneth French’s Data Library did not show any

inconsistencies or problems and will hence not be discussed in this section. Further dis-

cussion on universe selection are deferred to Section 6 when the empirical framework is

explained.

5.1. Asset Returns (CRSP)

The CRSP dataset provides daily returns on nearly every asset listed on US stock

exchanges from January 1990 until December 2023. The CRSP dataset offers multiple

ways of identifying assets. For this report, each permno is considered a separate asset.

As the permno of a stock tends to change after major corporate actions (e.g. spin-offs or

mergers), this avoids having to deal with those complexities. Furthermore, the curcdd field

is used to filter for USD-denominated assets only and the loc field is used to filter for US-

headquartered firms only. Finally, the linkprim flag is used to filter out any non-primary

shares and the exchg flag is used to filter out any OTC shares. These high-level filters

ensure that only reasonably tradable, US-based assets are considered within this paper.

In addition to identifying and selecting the relevant assets, several pre-processing steps

are required to ensure the reliable data for these assets. First, the CRSP dataset does not

offer returns data directly, only price data. To simplify the analysis, this paper assumes
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that all dividends are instantly re-invested into an asset. Therefore, we need to calculate

the total returns adjusted for dividends and stock splits, which we will simply refer to as

adjusted returns henceforth. To this end, CRSP provides three important fields:

• prccd: daily closing price of the asset.
• trfd: daily adjustment factor of the asset.
• ajexdi: daily ex-dividend adjustment of the asset.

Using these three field, adjusted returns can be calculated as follows. Let:

pat = trfdat · prccdat /ajexdiat
then the returns for asset a at time t are given by:

rat =
pat − pat−1

pat−1

Missing values for trfd and ajexdi are handled in two ways. First, missing values at the

very beginning of each asset time-series are filled with 1. Underlying is the assumption

that missing data at the start of the time series simply represents the absence of any

adjustments. Second, remaining missing values are forward filled. Underlying this is the

assumption that these adjustment factors are highly persistent so in the absence of any

data, the previous available value is the next best guess. Missing values in prccd are not

handled as there is no reasonable way of knowing the true value6.

Next to returns, reliable market caps are necessary for subsequent universe selection.

To this end, CRSP provides the field cshoc: the shares outstanding at the close of every

trading day. Market caps can then simply be calculated at the close of each trading day t

for each asset a as:

mcapat = cshocat · prccdat
Missing values in cshoc are handled by forward filling the data. Underlying is the assump-

tion that shares outstanding is highly persistent so in the absence of any data, the previous

available value is the next best guess. Missing values at the start of each asset time-series

are not handled as there is no way of reasonably knowing the true value and backward

filling could constitute a potential look-ahead bias.

As seen on Figure 2, after undertaking these pre-processing steps only a small fraction of

the returns data is missing each month. Market cap data, however, is quite sparse prior to

1997 as seen on Figure 3. This means that prior to 1997, no reliable universe selection can

be performed based on market cap. As it turns out, this issue is negligible as the proposed

factor model requires a certain burn-in period and hence universe selection only starts as

of 2005.

6 Forward filling this data would lead to a substantial measurement error while backward filling would
constitute a look-ahead bias.
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Figure 2. : Proportion of missing returns data over time.

Figure 3. : Proportion of missing market cap data over time.

When inspecting the resulting asset returns, at first sight it appears that there are

outliers in the extreme positive and negative returns. Nonetheless, a qualitative analysis

clarified that the bulk of such outliers were in fact real events, often related to periods

of low liquidity, micro-caps, and market crashes. As a result, we opt not to winsorize or

clip the returns for backtesting purposes. Under this approach, we have to accept that a

handful of the asset returns were true outliers, but on the flip-side we do not mechanically

under- or overstate results by removing extreme, but real asset returns.

A final consideration for the asset returns is how to deal with new arrivals, e.g. IPOs,

and market exits, e.g. bankruptcies, delistings, and acquisitions. From a pre-processing

standpoint, no action is taken here as these are all considerations for the backtesting frame-

work and model fitting. The model fitting takes a simplistic, but tradable approach to this

problem, namely by only considering assets that have full-history data available over the

model’s training window. Although strict, this approach avoids that the results are clouded

by biases introduced by handling missing data. On the flip side, it constitutes a certain
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selection bias, namely only assets with full-history are considered. Nonetheless, this bias is

not forward looking and applies equally to each model, making the results comparable7.

5.2. Global Factor Model (GFM) and US Factor Model (USFM)

The open-source factor models from Jensen, et al [26] are already of impeccable quality

with no apparent missing or false data. Nonetheless, it is important to understand this

dataset as it is crucial to the results of this paper. To that end we compare the provided

Global Factor Model (GFM) with the US Factor Model (USFM).

The GFM contains data on 153 factors across 93 countries [26]. For each factor, Jensen,

et al. construct the 1-month holding period return for each country. The factor returns are

defined through a high minus low tercile sort on the underlying signal, corresponding to

the excess return of a long-short, zero-net-investment strategy. Each factor is long (short)

the tercile identified by the original paper to have the highest (lowest) expected return.

Multiple weighting schemes are provided. This paper uses capped value weighted returns,

following the recommendation from Jensen, et al. [26].

The GFM and the USFM are identical until 1983. This is purely mechanical as new

countries only enter the dataset post this date. Next to the number of countries, the num-

ber of factors varies over time. This is also largely mechanical based on when the necessary

data becomes available. Most importantly, as of 1990 high-quality data is available for all

153 factors in the USFM, in line with the available data on the asset returns.

Important to note is that the factor models report daily excess returns and not raw

returns. As a result, it is not evident to simply calculate compounded returns from these

time series. Jensen, et al. [26] also provide monthly factor returns, but frequencies other

than daily or monthly have to be reconstructed from the bottom up using the daily port-

folio returns.

Anecdotally, when considering the logarithmic sums of the excess return of both models

over time, we observe that the USFM outperforms the Global Factor Model in about 60%

of the factors. More generally, Swade, et al. [39] show that the USFM is most appropriate

when considering US stock universes whereas for other countries the GFM performs better

than the country-specific factor model. We follow this suggestion and only consider the

USFM for the remainder of this paper.

§6. Empirical Framework

Given the model pipeline and necessary data, the performance of the model can be

evaluated. Conceptually, this happens from two angles. First, the actual model outputs

are evaluated, i.e. how well does the estimated asset expected excess return vector and

VCV correspond to the realized asset expected excess return vector and VCV over a

future period? Although this exercise allows for a pure model evaluation, a core problem

is that the true expected excess return vector and VCV are latent variables. By using the

7 In a production model, different approaches could be taken to deal with new arrivals, e.g. by using
industry returns or similar as a proxy to fill out missing historical data.
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empirical realizations as a proxy for the true target, this analysis is implicitly biased.

In light of these concerns, the factor model pipeline is also evaluated by simulating a

real-world application, namely portfolio optimization. Through this exercise, the perfor-

mance of each factor model configuration is evaluated based on the resulting portfolio

characteristics such as turnover and various risk-return metrics. Figure 4 provides a visual

overview of where in the portfolio optimization process each evaluation step takes place.

Figure 4. : Diagram outlining where in the portfolio optimization pipeline each model eval-

uation step takes place.

The remainder of this section will outline how both the pure model evaluation and

portfolio backtest are setup. Section 7 will subsequently present and draw conclusions on

the results of both exercises.

6.1. Pure Model Evaluation

The pure model evaluation is designed to test the model’s ability to forecast future returns

and observed covariances of assets, under different model configurations. To this end, each

model is fitted and evaluated over rolling windows as shown in Figure 5. Different evaluation

metrics can be considered on the expected return vector and VCV, both individually and

jointly.

Figure 5. : Factor model evaluation diagram
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The output of this evaluation framework are time-series of evaluation metrics for differ-

ent model configurations. These can subsequently be analyzed to assess both the average

as well as the time-varying performance of each model. It is important to realize that

the both are equally important. Depending on the use case, a model with worse average

performance, but great performance during specific important periods may be preferred

over a model with the opposite characteristics.

Different evaluation metrics are considered between the expected and realized return

vector and VCV, both individually and jointly. First, Mean Squared Error (MSE) judges

the size of potential errors variance-covariance matrices (i.e. the Frobenius Norm) and the

expected return vectors (i.e. the 2-Norm). Second, since many optimization problems are

invariant under scale and bias of the expected returns, Pearson and Kendall correlation

between the expected and realized return vectors measure the correct direction or rank-

ing of the forecasts. We also consider the MSE and correlations of the VCV diagonals

to isolate potential performance differences between variances and covariances. Finally,

2-Wasserstein distance is used as a joint metric over expected returns and the VCV8.

This metric measures the similarity between the mutltivariate normal distribution of asset

returns implied by the factor model and the one implied by realized returns.

Looking towards the proposed model overview of Section 4.5, there are much more possi-

ble combinations of models than can be reasonably be evaluated within this paper, especially

when considering all hyperparameters and training period sizes. As a result, a representa-

tive set of model configurations is selected, with results presented in Section 7. To evaluate

different model configurations, we benchmark the performance against a static factor model

and a regime-dependent model without any factor selection nor engineering.

6.2. Portfolio Optimization

Next to the pure model evaluation, we also want to understand the potential benefits of

our proposed model in real-world applications. To that end, we apply standard portfolio

optimization on our factor models to evaluate the performance of the resulting portfolios.

Concretely, we consider Mean-Variance Optimization (MVO) and Minimum Volatility. To

evaluate the resulting portfolios, we apply these two optimization techniques over two

benchmark factor models. First, we consider the static US Factor Model (USFM)9 from

Jensen, et al. [26]. In line with Swade, et al. [39], we enhance the USFM with the Fama-

French market factor, Mkt-RF [15]. From hereon, we simply refer to this enhanced model

as the USFM. Second, we consider a dynamic version of the USFM where we apply 2-state

regime conditioning, but no feature selection or engineering. Through these two bench-

marks, we aim to isolate the source of potential improvements to one or a combination of

regime conditioning, factor selection, and factor engineering. Next to these two optimized

portfolios, a simple equal-weighted, monthly rebalanced portfolio is also included as a

model-agnostic benchmark.

8 Under a normality assumption, He [22] shows that there is a closed form solution to calculate this distance
metric.

9 As our equity universe consists of US stocks, the US Factor Model explains the equity cross-section better
than the Global Factor Model as shown by Swade, et al. [39].
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To go from portfolio optimization to tradable portfolios, we consider portfolios rebalanced

at the beginning of each business month. For each configuration of factor model and portfolio

optimizer we repeat the following on each rebalance date:

1. Select the 200 stocks with the largest market cap at the close of the previous month’s

last trading day.

2. Fit the chosen factor model on a 15-year lookback window10,11 for the selected assets.

3. Extract the relevant expected return vector (µ) and asset VCV (Σ) from the factor

model.

4. Calculate the optimal weights using µ and Σ with the chosen portfolio optimizer under

no-short selling, zero leverage, and full investment constraints.

5. Simulate the returns of this portfolio over the month.

This optimization exercise is applied over the top 200 stocks by market cap for three

reasons. First, the data quality on large caps is much better than on small caps, mitigating

the impact of outliers and other data issues. Second, it is infeasible to perform quadratic

optimization over very large asset universes (e.g. 1000+ stocks), because of computational

constraints and increased overfitting. Finally, long-only constrained portfolios have the

undesirable tendency to create non-diversified portfolios with many (near) zero asset

weights [7][18][32]. In the absence of constraints or other methods to deal with these issues,

there is little benefit from considering a large asset universe for the optimization problem.

Regardless of this choice, there is nothing inherent to our proposed model that disallows

anyone from applying it over different asset universes.

In general, these portfolios could be subject to any constraints that a typical quadratic

optimizer allows for. For the purposes of this paper, we apply three constraints on every

portfolio: no short-selling, zero-leverage, and full investment. These constraints form the

basis of, but are weaker than what most portfolio managers face in practice. As Clarke, et

al. [6] argue, adding further constraints to the optimization problem reduces the ex-post

information ratio. Nonetheless, using a better factor model will still benefit portfolio man-

agers, even under constraints as argued by Ledoit, et al. [30].

After running the backtests for different model configurations, different performance

metrics are reported, for three key purposes:

1. Risk-Return Metrics: Are these portfolios attractive for prospective investors? Do

they have superior tail-risk characteristics?

2. Diversification Metrics: How concentrated are these portfolios?

3. Turnover Metrics: How costly is it to implement these portfolios?

Similar to the pure model evaluation, there are much more possible combinations of

models than can be reasonably be evaluated within this paper. As a result, a representative

set of model configurations is selected, with results presented in Section 7.

10 The choice of a 15 year lookback window is in line with our previous industry project [11] and ensures
that the regime model is exposed to multiple different market scenarios.

11 As mentioned earlier, the Fama-French [15] market factor, Mkt-RF, is used for regime modeling and the
USFM [26] is used as the factor model input.
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§7. Results

7.1. Model Evaluation

To avoid an information overload, this section will focus on the key insights12 gained

from evaluating many model configurations through the metrics defined in Section 6.1.

Evaluation tables backing up these insights can be found in Appendix E. All metrics were

computed across different validation window sizes using a training set of 3,750 business

days with a 62-day stride. Furthermore, all metrics were computed over the portfolio

optimization universe described in Section 6.2.

A first insight is that regime-dependent factor models predict the realized return dis-

tribution better in the short term (1-3 months) than in the long term (1-3 years). This

is shown clearly through the respective Wasserstein distances and holds both for 2- and

3-state GMMHMMs. Notably, under a 2-state model, neither factor selection, nor factor

engineering has a strong impact on the Wasserstein distance. However, under a 3-state

model, these steps have a bigger impact. On the selection side, sequential selection through

GRS deteriorates performance, whereas Shapley based selection improves performance.

On the engineering side, RP-PCA deteriorates results, whereas Linear Boosting improves

results, especially over the long term (1-3 years). Nonetheless, the standard deviation

over these metrics prevent us from drawing strong conclusions, especially for the regime-

dependent models.

The large standard errors in the regime-dependent model metrics lead us to our next

insight. As seen in Figure 6, the performance of static factor models is much more stable

than that of regime-dependent models. Even more interesting is that the regime-dependent

models seem to do especially well during “stable” times, e.g. 2012-2016 (as also noted

during our previous industry project [11]). A main driver behind this phenomenon is that

regime-dependent models can properly condition themselves on the stable state and hence

are not overly influenced by historically challenging conditions. On a static factor model,

however, historically challenging conditions (and outliers) can significantly impact the

estimated expected factor returns and covariances.

The improved performance over the stable state is not a free lunch however, as can be

seen through the spikes of erroneous behavior in Figure 6. There could be multiple reasons

behind this issue. First, there is the obvious problem of misclassification. These regime

models are not perfect and as such, misclassifying today’s state will lead to bad estimates

for the asset expected return vector and VCV. Second, imagine that the regime model splits

data into a stable and abnormal state. Since the abnormal state occurs less frequency, its

parameters may be less efficiently estimated, leading to a bad forecast for this state. Third,

and most subtle, is the choice of factor blending (see Section 4.4). This model is fundamen-

tally a 1-period model, i.e. the blended factor model is optimal for tomorrow given today’s

regime information. However, we are now evaluating these factor models over longer peri-

ods, i.e. 1-3 months. This highlights a potential improvement on the proposed factor model.

12 Metrics which did not show novel insights or variation between models are not reported but can be
found in the online appendix to this paper [12].
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Figure 6. : Evolution of 2-Wasserstein distance over time over different validation peri-

ods. The orange lines are the performance for a regime-dependent model with 2-state

GMMHMM and no factor selection or engineering. The blue lines are the performance of a

static USFM benchmark model.

Another critical takeaway is the superiority of regime-dependent factor models to direc-

tional returns forecasting. To see this, we have to look at the Pearson correlation between

expected and realized returns. First, on a 1-month frequency, the static factor model has a

correlation of -1.4% on average between expected and realized returns, whereas a 2-state

GMMHMM-based model has a correlation of +5.1% and a 3-state GMMHMM-based model

has a correlation of +1.9% on average. Second, 2-state models outperform static models on

all evaluation windows and 3-state models outperform on all but one evaluation windows.

Next, similar to the Wasserstein distance comparison, factor selection and engineering have

little to no impact on 2-state models. However, they have a strong impact on 3-state mod-

els. On the factor selection side, both Shapley and RP-PCA show significant improvements

on 3-state models. On the factor engineering side, RP-PCA deteriorates results, whereas

Linear Boosting shows some improvements for short-term forecasts (1 month to 1 year).

This analysis emphasizes the value of regime-dependent models in conditions where

market regimes are distinctly identifiable, especially for forecasting return-dynamics more

accurately during stable market conditions. Nonetheless, it is clear that neither dynamic nor

static models offer a one-size-fits-all solution. Both the investment horizon and investors’

preference for stable models influence which model is the most appropriate. The number

of states in a regime model also play an important role in finding the appropriate model.

Based on this analysis, 3-state models appear to be more sensitive to factor selection and

engineering than 2-state models.
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7.2. Portfolio Backtests

Factor Model Regime Model Factor Selection Factor Engineering Select First?

USFM / / / /

USFM GMMHMM (2) / / /

USFM GMMHMM (2) Hierarchical / /

USFM GMMHMM (2) Shapley / /

USFM GMMHMM (2) GRS / /

USFM GMMHMM (2) RP-PCA / /

USFM GMMHMM (2) / RP-PCA /

USFM GMMHMM (2) / EBLR /

USFM GMMHMM (2) Hierarchical RP-PCA Yes

USFM GMMHMM (2) Shapley RP-PCA Yes

USFM GMMHMM (2) Hierarchical EBLR Yes

USFM GMMHMM (2) Shapley EBLR Yes

USFM GMMHMM (2) Hierarchical RP-PCA No

USFM GMMHMM (2) Shapley RP-PCA No

USFM GMMHMM (2) Hierarchical EBLR No

USFM GMMHMM (2) Shapley EBLR No

Table 1.: Overview of all models considered within the portfolio backtests. Each model

uses the USFM as its underlying large factor model and a 2-state Gaussian Mixture Model

HMM over Mkt-RF as the regime model. Each factor selection procedure selects 15 factors

and each factor engineering procedure constructs 10 factors, unless the engineering step

occurs first. In that case, 10 factors are constructed, but 25 are selected. This ensures that

all models that perform both selection and engineering consider the same amount of final

factors, regardless of the order in which these steps took place. Also note that the first two

rows represent the static and regime-dependent benchmark factor models, respectively.

The portfolio backtests prescribed in Section 6.2 are ran from 2005-2023 for each model

in Table 1. In line with the results from Section 7.1, 2-regime models are considered as

their performance aligns the most with a 1 month investment objective. An equal weighted

portfolio is also included as a model-agnostic benchmark. The wide variety of model config-

urations under consideration enable us to identify exactly what components are beneficial

or redundant to construct optimal portfolios.

7.2.1. Portfolio Performance

When looking at the portfolio performance, it is important to consider the objectives of

each component of the proposed factor model. On the one hand, regime-conditioning and

factor engineering aim at improving the overall performance of optimized portfolios. This

can be realized either in better tail-risk measures or simply overall risk-return character-

istics. On the other hand, factor selection aims at maintaining the performance of large

factor models, while avoiding the use of hundreds of factors.
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Given this context, Tables 2 and 3 show a broad set of performance metrics for the opti-

mized portfolios. First note that the equal weighted (EW) and the two static benchmarks

are nearly identical in terms of Sharpe and Sortino ratio. Next to this, the static bench-

marks are more left-skewed and more leptokurtic than the EW benchmark. Although the

static benchmarks do show better drawdown measures, they are not volatility matched to

the EW benchmark. Under volatility matching, they fail to show much better drawdown

measures. Peeking ahead to Section 7.2.2, the static portfolios also show a higher TO and

less diversification than the EW benchmark.

Based on these observations, the static large factor model is not very attractive relative

to the simple EW portfolio. The question now becomes whether regime-dependency can

fix these issues.

Comparing mean-variance optimization to minimum volatility portfolios, MVO appears

to be the better choice overall, while minimum volatility offers slightly better tail-risk pro-

tection as evidenced by the MDD and mean annual MDD. Comparing regime-dependent

models to their static counterpart, regime-dependent models are superior across the board.

They lead to higher returns, less volatility, less tail-risk, and an overall better risk-return

trade off. Remarkably, the regime-dependent portfolios have a less negative skewness and

smaller Fisher kurtosis, indicating that their returns were more normal over this backtest

than those of their static counterparts. Furthermore, this outperformance also largely holds

relative to the EW benchmark, with the exception of a slightly more negative skewness.

Looking towards factor selection, it appears to deliver on its objective. There are only

negligible differences in the portfolio performance between the regime-dependent models

with and without factor selection. This has two important implications. First, this suggests

that many of the factors in the USFM are redundant, at least in one of the regimes. Second,

including redundant factors is not necessarily detrimental to the portfolio performance as

factor selection does not lead to improved results. This opens up interesting modeling choices

in practice. On the one hand, small factor models are easier to understand and have less

numerical complexity. On the other hand, incorporating redundant factors to satisfy client

demands may not lead to worse portfolios overall13.

13 For instance, clients may have certain exposure constraints that can only be satisfied by incorporating
redundant factors or they may simply wish to see the optimal portfolio expressed in terms of factors
they are familiar with (rather than the just the optimal factor set).
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Strategy
Regime

Dependent
Selection Engineering

Select

First?

Mean

Return
Vol

Sharpe

Ratio

Sortino

Ratio
MDD

EW* / / / / 0.97% 4.41% 0.20 0.27 -46.52%

MVO* No / / / 0.80% 3.39% 0.20 0.28 -33.90%

MVO Yes / / / 0.90% 3.24% 0.24 0.35 -32.25%

MVO Yes Hierarchical / / 0.90% 3.26% 0.24 0.35 -32.44%

MVO Yes Shapley / / 0.90% 3.26% 0.24 0.35 -32.25%

MVO Yes GRS / / 0.90% 3.27% 0.24 0.35 -32.00%

MVO Yes RP-PCA / / 0.91% 3.25% 0.24 0.36 -32.19%

MVO Yes / RP-PCA / 0.89% 3.25% 0.24 0.35 -32.22%

MVO Yes / EBLR / 0.90% 3.26% 0.24 0.35 -32.44%

MVO Yes Hierarchical RP-PCA Yes 0.89% 3.27% 0.24 0.34 -32.94%

MVO Yes Hierarchical RP-PCA No 0.90% 3.25% 0.24 0.36 -32.46%

MVO Yes Shapley RP-PCA Yes 0.90% 3.25% 0.24 0.36 -32.44%

MVO Yes Shapley RP-PCA Yes 0.90% 3.26% 0.24 0.35 -32.11%

MVO Yes Hierarchical EBLR Yes 0.90% 3.26% 0.24 0.35 -32.26%

MVO Yes Hierarchical EBLR No 0.90% 3.26% 0.24 0.35 -32.40%

MVO Yes Shapley EBLR Yes 0.90% 3.25% 0.24 0.36 -32.40%

MVO Yes Shapley EBLR No 0.90% 3.25% 0.24 0.35 -32.40%

Min Vol* No / / / 0.78% 3.43% 0.20 0.27 -31.95%

Min Vol Yes / / / 0.87% 3.20% 0.24 0.34 -29.10%

Min Vol Yes Hierarchical / / 0.87% 3.20% 0.24 0.34 -29.31%

Min Vol Yes Shapley / / 0.87% 3.20% 0.24 0.34 -29.10%

Min Vol Yes GRS / / 0.87% 3.20% 0.24 0.34 -29.10%

Min Vol Yes RP-PCA / / 0.87% 3.20% 0.24 0.34 -29.11%

Min Vol Yes / RP-PCA / 0.87% 3.20% 0.24 0.34 -29.15%

Min Vol Yes / EBLR / 0.87% 3.20% 0.24 0.34 -29.31%

Min Vol Yes Hierarchical RP-PCA Yes 0.86% 3.21% 0.23 0.34 -29.67%

Min Vol Yes Hierarchical RP-PCA No 0.88% 3.20% 0.24 0.34 -29.21%

Min Vol Yes Shapley RP-PCA Yes 0.87% 3.20% 0.24 0.34 -29.31%

Min Vol Yes Shapley RP-PCA Yes 0.87% 3.21% 0.24 0.34 -29.14%

Min Vol Yes Hierarchical EBLR Yes 0.87% 3.20% 0.24 0.34 -29.11%

Min Vol Yes Hierarchical EBLR No 0.88% 3.20% 0.24 0.34 -29.27%

Min Vol Yes Shapley EBLR Yes 0.87% 3.20% 0.24 0.34 -29.27%

Min Vol Yes Shapley EBLR No 0.88% 3.20% 0.24 0.34 -29.27%

Table 2.: Core summary statistics on the optimized portfolios’ performance. The benchmark

models are indicated with a star (*), while the remaining rows represent the other models

from Table 1. All reported numbers are monthly, except for MDD which is full-sample.
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Strategy
Regime

Dependent
Selection Engineering

Select

First?
Skew

Fisher

Kurtosis

Max

Monthly

Loss

Max

Monthly

Gain

Mean

Annual

MDD

EW* / / / / -0.42 1.50 -16.26% 14.06% -12.28%

MVO* No / / / -0.65 1.92 -13.57% 10.29% -8.99%

MVO Yes / / / -0.54 1.32 -11.61% 9.56% -8.42%

MVO Yes Hierarchical / / -0.56 1.36 -11.61% 9.56% -8.48%

MVO Yes Shapley / / -0.56 1.35 -11.61% 9.56% -8.45%

MVO Yes GRS / / -0.56 1.35 -11.61% 9.75% -8.43%

MVO Yes RP-PCA / / -0.53 1.29 -11.61% 9.75% -8.40%

MVO Yes / RP-PCA / -0.56 1.35 -11.61% 9.56% -8.46%

MVO Yes / EBLR / -0.56 1.35 -11.61% 9.56% -8.46%

MVO Yes Hierarchical RP-PCA Yes -0.59 1.49 -12.06% 9.56% -8.59%

MVO Yes Hierarchical RP-PCA No -0.54 1.29 -11.61% 9.56% -8.45%

MVO Yes Shapley RP-PCA Yes -0.54 1.31 -11.61% 9.56% -8.43%

MVO Yes Shapley RP-PCA Yes -0.56 1.36 -11.61% 9.56% -8.43%

MVO Yes Hierarchical EBLR Yes -0.56 1.36 -11.61% 9.56% -8.46%

MVO Yes Hierarchical EBLR No -0.57 1.36 -11.61% 9.56% -8.48%

MVO Yes Shapley EBLR Yes -0.54 1.29 -11.61% 9.56% -8.44%

MVO Yes Shapley EBLR No -0.54 1.35 -11.61% 9.75% -8.42%

Min Vol* No / / / -0.71 1.99 -13.60% 9.37% -9.19%

Min Vol Yes / / / -0.57 1.33 -11.81% 8.66% -8.12%

Min Vol Yes Hierarchical / / -0.57 1.33 -11.81% 8.66% -8.10%

Min Vol Yes Shapley / / -0.57 1.33 -11.81% 8.66% -8.06%

Min Vol Yes GRS / / -0.57 1.34 -11.81% 8.70% -8.06%

Min Vol Yes RP-PCA / / -0.57 1.34 -11.81% 8.70% -8.07%

Min Vol Yes / RP-PCA / -0.57 1.34 -11.81% 8.66% -8.07%

Min Vol Yes / EBLR / -0.57 1.33 -11.81% 8.66% -8.09%

Min Vol Yes Hierarchical RP-PCA Yes -0.59 1.45 -12.31% 8.66% -8.15%

Min Vol Yes Hierarchical RP-PCA No -0.58 1.34 -11.81% 8.66% -8.08%

Min Vol Yes Shapley RP-PCA Yes -0.57 1.34 -11.81% 8.66% -8.08%

Min Vol Yes Shapley RP-PCA Yes -0.59 1.37 -11.81% 8.66% -8.15%

Min Vol Yes Hierarchical EBLR Yes -0.58 1.34 -11.81% 8.66% -8.07%

Min Vol Yes Hierarchical EBLR No -0.57 1.34 -11.81% 8.66% -8.08%

Min Vol Yes Shapley EBLR Yes -0.58 1.34 -11.81% 8.66% -8.10%

Min Vol Yes Shapley EBLR No -0.57 1.35 -11.81% 8.70% -8.06%

Table 3.: Additional summary statistics on the optimized portfolios’ performance. The

benchmark models are indicated with a star (*), while the remaining rows represent the

other models from Table 1. All reported numbers are monthly, except for mean annual

MDD. The mean annual MDD captures the average MDD that an investor would observe

over any 12 month period of holding the portfolio.

Finally, unlike factor selection, factor engineering fails to achieve its objective as there

are only negligible differences in the portfolio performance between the regime-dependent

models with and without factor engineering. There could be multiple reasons behind this

failure to improve results. First, the USFM presents an ambitious benchmark to beat as its

153 factors are the result of decades of empirical finance research. As such, it is conceptually

understandable that both RP-PCA and EBLR fail to uncover latent factors that were not

captured yet. Second, the universe over which this backtest applies, the top 200 US stocks

by market cap, is highly liquid and considered highly efficient. This further sets a high
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bar as many factors are often attributed to low-liquidity and small cap stocks. Finally, the

successful integration of factor engineering may require a different modeling approach. In

the current model set-up, idiosyncratic returns (or “alpha”) and idiosyncratic volatility are

simply accounted for by a linear intercept and the in-sample residuals, as seen in Equations

4.2 and 4.4. Through this standard model, the idiosyncratic components may outshine any

improvement on the systematic components.

7.2.2. Portfolio Weights

Beyond from understanding the performance of each portfolio, it is important to

understand the asset weights behind these portfolios. Each portfolio is rebalanced at the

beginning of the month and considers the same universe of assets. As seen in Table 4, the

equal weighted portfolio invests in 154 assets each month, on average14. The optimized

portfolios however are much more concentrated. As mentioned before, long-only con-

strained portfolios have the undesirable tendency to create non-diversified portfolios with

many (near) zero asset weights [7][18][32]. MVO portfolios appear better diversified than

minimum volatility portfolios. More importantly, portfolios from regime-dependent models

are more diversified than their static counterparts.

The better diversification of regime-dependent models is not a free lunch, however. Note

that the regime-dependent models cause a significantly higher turnover than their static

counterparts. As seen by the equal weighted portfolio, this higher turnover cannot simply

be attributed to holding a larger number of assets on average. Consider instead Equations

4.3 and 4.4, which show how the asset expected excess return vector and VCV are condi-

tional on today’s state. As a result, the optimal portfolio weights will also be conditional

on today’s state and state changes are likely to induce a larger turnover.

Finally, as far as the factor selection and engineering procedures go, there are little

to no changes to the portfolio weights under any of the different configurations, in line

with observed portfolio performance. This implies two important observations. On the

one hand, the factor selection appears to do exactly what it is meant to do. It is able to

significantly reduce the amount of factors considered in each state from 153 to 15 with

little to no loss in performance. On the other hand, the factor engineering fails to make an

impact. Neither the linear factors found by RP-PCA nor the non-linear factor found by

linear boosting improve or even change the portfolio weights. Hence the portfolio weights

do not justify incorporating any of these new factors into the model.

Next to diversification and turnover, it is also important to investigate the similarity

of the optimal portfolio weights. As shown on Figure 7, The portfolio weights correlate

with each other in four distinct clusters: static MVO, static minimum volatility, regime-

dependent MVO, and regime-dependent minimum volatility. Note also how the two static

models are relatively highly correlated between each other, but less correlated to the regime-

dependent models. In line with the other observations on the portfolio weights, factor

14 Although the universe considers the top 200 stocks by market cap, some assets are not selected since
they did not have complete data over the past 15 years. This additional selection step aligns the equal
weighted universe with the optimized portfolios which operate under this full-history requirement.
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selection achieves its objective both under MVO and minimum volatility, with near per-

fect correlation to the regime-dependent model without factor selection. Similarly, factor

engineering fails to achieve its objective with seemingly no impact on the portfolio weights.

Strategy
Regime

Dependent
Selection Engineering

Select

First?

Mean #

Assets

Mean Weight

Change (%)

Monthly

Turnover

EW* / / / / 154.2 0.21% 0.39

MVO* / / / / 38.7 0.26% 0.49

MVO Yes / / / 44.4 0.37% 0.68

MVO Yes Hierarchical / / 44.5 0.37% 0.68

MVO Yes Shapley / / 44.5 0.37% 0.68

MVO Yes GRS / / 44.4 0.37% 0.68

MVO Yes RP-PCA / / 44.5 0.37% 0.68

MVO Yes / RP-PCA / 44.4 0.37% 0.68

MVO Yes / EBLR / 44.5 0.37% 0.68

MVO Yes Hierarchical RP-PCA Yes 44.4 0.37% 0.69

MVO Yes Hierarchical RP-PCA No 44.4 0.37% 0.68

MVO Yes Shapley RP-PCA Yes 44.4 0.37% 0.68

MVO Yes Shapley RP-PCA No 44.3 0.37% 0.68

MVO Yes Hierarchical EBLR Yes 44.5 0.37% 0.68

MVO Yes Hierarchical EBLR No 44.5 0.37% 0.68

MVO Yes Shapley EBLR Yes 44.4 0.37% 0.68

MVO Yes Shapley EBLR No 44.4 0.37% 0.68

Min Vol* / / / / 26.7 0.37% 0.49

Min Vol Yes / / / 31.7 0.48% 0.66

Min Vol Yes Hierarchical / / 31.7 0.48% 0.65

Min Vol Yes Shapley / / 31.7 0.48% 0.65

Min Vol Yes GRS / / 31.6 0.48% 0.65

Min Vol Yes RP-PCA / / 31.7 0.48% 0.65

Min Vol Yes / RP-PCA / 31.7 0.47% 0.65

Min Vol Yes / EBLR / 31.7 0.48% 0.65

Min Vol Yes Hierarchical RP-PCA Yes 31.6 0.48% 0.66

Min Vol Yes Hierarchical RP-PCA No 31.7 0.48% 0.65

Min Vol Yes Shapley RP-PCA Yes 31.7 0.48% 0.65

Min Vol Yes Shapley RP-PCA No 31.6 0.48% 0.66

Min Vol Yes Hierarchical EBLR Yes 31.6 0.48% 0.65

Min Vol Yes Hierarchical EBLR No 31.7 0.48% 0.65

Min Vol Yes Shapley EBLR Yes 31.6 0.48% 0.65

Min Vol Yes Shapley EBLR No 31.6 0.48% 0.65

Table 4.: Summarizing statistics on the optimal portfolio weights. The benchmark models

are indicated with a star (*), while the remaining rows represent the other models from

Table 1. The mean number of assets indicates in how many assets each portfolio invests on

average, and acts as a diversification metric. The mean weight change indicates the average

weight change for assets with non-zero weights before or after the rebalancing. Finally, the

monthly turnover is defined as the total value of all assets bought or sold during rebalancing

divided by the portfolio value on the rebalance date. This value is bounded between 0 (no

trades) and 2 (no overlapping assets pre and post rebalancing).
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Figure 7. : Pearson correlation between the optimal weights for each model shown in Table

1, both under mean-variance optimization and minimum volatility objectives.

§8. Use Case: Qualitative Model Introspection and Interpretation

Beyond the numerical results from Section 7, another important feature of our proposed

factor model is its explainability. Through the structured model framework, each of the

regime detection , factor selection, and factor engineering steps can be introspected and

explained. In the remainder of this section, we provide two example use cases. First, we

introspect a regime-dependent model built from a 2-state GMMHMM and a Shapley

Feature Selector. Next, we introspect a similar model, with a Sequential GRS Feature

Selector rather than Shapley. This section does not aim to present an exhaustive set of

introspection tools, rather explainers can be easily built and introduced to the pipeline

based on the user’s objectives.

8.1. Introspection With Shapley Feature Selection

We fit the previously described model at the end of 2022 using a 20 year lookback

window. As in previous sections, Mkt-RF is used to fit the regime model, the USFM is

used as the input factor model, and the asset universe is the top 200 US stocks by market

cap. This results in a regime-classification that can intuitively be interpreted as a stable

and a volatile state, as shown in Figure 8. As seen in Figure 9, the last few years of the

training sample has been quite volatile, with all of 2022 being classified as volatile. Beyond

from this, the regime classification picks up on expected events such as Volmageddon in
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early 2018 and 2020’s market crisis. This first level of introspection allows us to validate

the fitted regime model against our economic intuition about market regimes, and more

importantly against our investment objectives.

Figure 8. : Daily fitted return distribution for a 2-state GMMHMM fitted over 2003-2022.

Figure 9. : In-sample regime classification plotted against market returns for the last 6

years of the training window for a 2-state GMMHMM fitted over 2003-2022.

Given this regime model, a logical next step is to investigate the selected factors for each

regime, specifically where they differ. A description of each factor can be found in Appendix

F. As seen in Figure 10, the majority of the factors overlap. This is expected as there are

certain themes (e.g. Low Risk orMarket Risk) that are almost always considered important.
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Within the differing factors, the stable state contains slightly more Value factors, while the

volatile state seems to contain slightly more Quality.

Figure 10. : Top 15 factors ranked by Shapley value for a 2-state GMMHMM fitted over

2003-2022. Overlapping factors are indicated in blue, unique factors are indicated in orange.

Figure 11. : Daily average returns of the top 15 factors ranked by Shapley value for a 2-

state GMMHMM fitted over 2003-2022. Overlapping factors are indicated in blue, unique

factors are indicated in orange.

In the stable regime, several factors are associated with Value, like debt-to-market,

(debt me), book-to-market (at me), and dividend yield (div12m me). Looking at Figure

11, Low Leverage factors, such as R&D-to-sales (rd sale) and net debt scaled by market
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equity (netdebt me), show positive returns in the stable regime, while they are absent in

the volatile regime. This hints at the fact that Value, Low Leverage and Quality could be

partially conditional to the market environment.

In contrast, in the volatile state the emphasis is shifted towards tail-risk and volatil-

ity. In particular, Low Risk factors, e.g. betting-against-beta (betabab 1260d) and low

idiosyncratic volatility (ivol ff3 21d), help to describe the dynamics of the volatile

regime. This might be explained through investors’ flight to safety behavior during times

of market distress. This idea is reinforced by the amount of Quality factors in the volatile

state, mainly based on operating profits (op at, cop atl1,gp at, op atl1).

Considering all factors jointly, we observe some potential issues with this model con-

figuration. The only factors that were selected were Mkt-Rf and a set of Value, Quality,

and Low Risk factors. This would imply that 10 out of the 13 available factor themes are

not relevant to explaining the asset cross-section. Such a drastic selection might not be

desirable, depending on the investment objective.

Remarkably, book-to-market (HML) is the only Fama French factor that was selected

through Shapley selection. Although the inclusion of HML hints at its importance in

explaining returns, it experiences low average returns in both regimes. This further hints

that this factor might already be priced out of the market. In addition, share turnover

(turnover 126d) and the frequency of zero trading days (zero trades 126d) are two of

the most important factors and shared between both regimes. As two liquidity factors, this

could highlight the importance of market frictions as a source of asset returns, independent

of the current market environment.

Based on these insights, a selection of more than 15 factors or the adoption of an

alternative factor selection method can be considered. Understanding how different fac-

tors interact with these market regimes can be instrumental in aligning a portfolio with

investor’s objectives and risk preferences.

8.2. Introspection With Sequential Selection

Next to Shapley-based factor selection, we also consider sequential factor selection

through GRS, with the selected factors shown in Figure 12. A notable difference is the

lack of overlapping factors between the two states, except for the market factor (Mkt-RF).

Furthermore, the selected factors span a much more diversified set of themes than those

selected through Shapley, as can be seen in Appendix F.

Notably, the factor directions are quite different between Shapley and GRS based factor

selection. While we see many factors with an average negative return in the stable regime

from Shapley, this is not the case for GRS. At the same time, there are more factors with

average negative returns in the volatile regime for GRS than for Shapley. Overall, the

observed differences between these two selection methods further understate that there is

no one-size-fits-all solution to construct an optimal factor model.
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Figure 12. : Daily average returns of the top 15 factors ranked by GRS Sequential selection.

Overlapping factors are indicated in blue, unique factors are indicated in orange.

§9. Discussion and Extensions

Revisiting the fundamental purpose of this paper, our goal was to offer both academics

and industry professionals a more transparent, yet equally robust alternative to powerful

but opaque statistical and machine learning-based factor models. In pursuit of this objec-

tive, we developed a structured factor model that integrates traditional factor modeling

methods with innovative concepts from recent research. This framework is flexible and

easily allows the introduction of new ideas. Finally, as shown in Section 8, the structured

nature of this framework allows users to build explainers for every component to introspect

the model end-to-end. In the remainder of this section, we will briefly discuss how the

analysis of this paper could be extended and next how the proposed factor model could be

improved based on what we learned.

9.1. Analysis Extensions

On the empirical side, we found mixed evidence in favour of our proposed factor model

as a forecasting tool, and strong evidence in favour of our proposed factor model for

portfolio optimization. A key takeaway is that there is no one-size-fits-all solution. This is

both a blessing and a curse as our proposed model allows for a great level of flexibility, but

subsequently needs to be fine-tuned properly.

A strong disclaimer with our results is that all model evaluation and backtesting hap-

pened over a universe of large cap, US equities. There are reasons to believe that other

universes could present more interesting opportunities for our proposed factor model. First,

it is well known that many equity factors are largely driven by small-caps, low-liquidity

firms, or firms that experience some form of market friction. Components such as factor

engineering may be more well-suited to such universes, rather than the already efficient
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universe we considered.

Next, as shown by Swade, et al. [39], the US equity market is explainable by a smaller

number of factors than other countries and it is one of the only markets where the country-

specific factor model (USFM) outperforms the global factor model (GFM) from Jensen, et

al. [26] [39]. As a result, factor selection and engineering may be more effective outside of

the US.

Finally, our optimization exercise considered a very naive alpha model, namely the

expected returns implied by the factor model. An interesting extension of the analysis would

be to test our proposed model with different, realistic alpha models. Beyond potentially

improving results, it could teach us about the source of the proposed model’s performance.

If all out-performance over the static model came from having better expected returns,

rather than a better asset VCV estimate, then this should become apparent quickly.

9.2. Model Extensions

Most notably, we see a clear path ahead to extend and improve the proposed model

framework. A first order improvement could come from improved regime detection models.

Hirsa, et al. [23] recently proposed Robust Rolling Regime Detection, which promises to

be highly stable under re-training, a key problem with HMMs. Next to that, new data and

models also open up new ways to think about regime detection. For instance, one could

look towards options-markets to construct probability density functions of the market [38]

[29]. These distributions could then be fed into an algorithm such as Wasserstein K-Means

which is able to detect regimes over probability distributions [24].

A second improvement related to the regime-conditioning is a more sophisticated factor

blending method. The current method, while intuitive to understand and computationally

efficient, is somewhat naive. Concretely, we would suggest to look beyond a single period

to match the model closer to the investment horizon. On the factor model side, this could

for instance happen by using modified regime transition probabilities that look N days

ahead. On the optimization side, the Markov Chain underlying HMM could be exploited to

maximize objectives under stochastic programming [1]. Under some assumptions, stochas-

tic programming can be performed for regime models other than HMMs as shown during

a previous project [11]. Conceptually, stochastic programming is just a simulation tool (in

this case HMM) combined with a numerical optimizer. More generally, this framework

could lend itself well to advanced techniques such as reinforcement learning. Although,

that would no longer be in line with our interpretability objective.

Next to new or more advanced features, the model can be improved through enhanced

robustness. A logical improvement would be to incorporate some form of covariance shrink-

age on the factor VCVs to limit noise sensitivity [40]. Additionally, the trade-off between

modeling systematic and idiosyncratic asset behavior can be tackled more explicitly. For

instance, it is well known that idiosyncratic volatility is mean-reverting [4]. Similarly,

idiosyncratic returns (i.e. α) may be overestimated in the current model. Incorporating

such ideas can aid in both the conceptual and numerical robustness of the proposed model.
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§10. Conclusion

As highlighted in the introduction, our research sought to extend the existing knowledge

in regime-dependent portfolio construction and factor models across three pivotal areas.

First, whereas most papers have approached regime-dependent portfolio construction as

an asset or index allocation problem, this paper applied and evaluated models over a large

equity cross-section. We found moderate evidence on the performance of our model from

an equity risk and return forecasting perspective, and positive evidence from a portfolio

optimization perspective. We recognize that there is no one-size-fits-all solution, and our

model addresses this by giving users the flexibility to fine-tune the pipeline towards their

objectives.

Second, this paper considered the joint problem of regime-modeling, compressing the

factor zoo, and finding new factors. Although each of these have been researched inde-

pendently, to our knowledge they have not yet been considered jointly. We only found

mixed evidence in favor of factor engineering for US, large-cap equities. However, we found

strong positive evidence on the impact of regime-conditioning on factor models and find

that factor selection can be applied successfully within regimes. Different factor selection

methods offer similar results, presenting a high level of flexibility.

Finally, this paper proposes a structured and explainable framework as an alternative

to recent developments in powerful, but opaque ML-based latent factor models. As shown

through an example use case, our model can be interpreted end-to-end, giving valuable

insights into the dynamics of factors and regimes. Furthermore, due to the structured

nature of the model, new introspection tools can be easily incorporated to satisfy the user’s

objectives.
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§A. Hidden Markov Model Description

Following Jurafsky, et al. [27], a Hidden Markov Model is defined in detail by:

1. A sequence of observations from a (multivariate) time series {rt}Tt=1 (returns in the

context of this paper)

2. A set of K latent states Q1, Q2, ..., QK (market regimes in the context of this paper)

3. A transition probability matrix Aij = P (St = Qj |St−1 = Qi)

4. A sequence of observational likelihoods, called emission probabilities B = bi(rt),

that each express the probability of observation rt being generated from state i

5. An initial probability distribution over the states π ∈ RK
+ such that πT1 = 1

The first order Hidden Markov Model used in this paper makes use of two additional

assumptions:

1. Markov Assumption: P (st|s1, . . . , st−1) = P (st|st−1)

2. Output Independence: P (rt|s1, . . . , sT , r1, . . . , rT ) = P (rt, st)

Rabiner [35] characterises HMMs by three fundamental problems:

1. Likelihood estimation: Given an HMM, transition matrix and emission probabilities

(A,B), and an observation sequence O = {rt}Tt=1, determine the likelihood P (O|A,B)

2. Decoding: Given an HMM, (A,B), and observation sequence {rt}Tt=1, determine the

best hidden state sequence {st}Tt=1

3. Learning: Given observation sequence {rt}Tt=1 , and the set of states in the HMM,

determine the best parameters θ = (A,B)

The learning and decoding problems are of primary interest for latent regime detection.

By prescribing the number of latent states and the emission distribution, the set of param-

eters, θ = (A,B), can be learned through the forward-backward algorithm, also known as

the Baum-Welch algorithm [2], a special case of the Expectation-Maximization algorithm.
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§B. Note on the GRS Statistic

Kamstra, et al. provide a detailed note and proof of the correct GRS statistic [28].

Consider a linear factor model fitted over T periods of time, for L factors, and N test assets:

rei,t = αi +

L∑
j=1

βi,jfj,t + ϵi,t

Here, rei,t are the excess returns of test-asset i at time t, fj,t are the factor returns for

factor j at time t, and ϵi,t is the regression residual. For this model, the GRS statistic W̃

is defined as follows:

W̃ ≡ T (T −N − L)

N(T − L− 1)

(
1 + f̄T Ω̃−1f̄

)
α̂T Σ̂−1α̂

Here, f̄ is the vector of expected factor returns, and α is the vector of regression alphas

from the linear factor model. Now the point of caution lies in Ω̃ and Σ̂. Ω̃ is the covariance

matrix of the factor returns and should be estimated with 0 degrees of freedom, i.e. as if

it was a population covariance matrix. A common mistake is to calculate this covariance

matrix with 1 degree of freedom which leads to an ill-distributed test statistic [28]. Finally,

Σ̂ is the covariance matrix of the regression residuals and should be estimated with L + 1

degrees of freedom.

Kamstra, et al. go on to show that if and only if the GRS test statistic is calculated

under this specification, the test follows an F distribution [28]:

W̃ ∼ FN,T−N−L
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§C. Hierarchical Risk Parity - Distance Metric

de Prado proposes to exploit the network structure between the assets by finding a

minimum spanning tree that describes the majority of the distance structure between the

assets. To achieve this, we can encode the distance between any two assets ai and aj as a

function of the correlation, ρi,j between those assets [10]:

d(ai, aj) =

√
1

2
(1− ρi,j)

We can calculate this distance metric for each pair of assets, giving rise to a distance

matrix D(U) where Di,j = d(ai, aj). This distance metric is then extended into another

distance metric which encodes not only the distance between each pair of assets in isolation,

but rather between each pair of assets taking into account all other assets. This is achieved

by considering the Euclidean distance between each pair of columns of D [10]:

d̃(ai, aj) =

√√√√ N∑
k=1

(Dk,i −Dk,j)2

We can calculate this distance metric for each pair of assets, giving rise to a distance

matrix D̃(U) where D̃i,j = d̃(ai, aj) [10]. This matrix will also be symmetrical and requires

the estimation of N(N+1)
2 elements. The innovation arises from now applying agglomerative

clustering over this distance matrix to find a unique dendrogram that encodes the distance

relationships of the entire network. The specific linkage algorithm to use can be viewed as a

hyperparameter, with common options being single, complete, average, and Ward linkage.

As a dendrogram is both a minimum spanning subtree of the network as well as a strict

binary tree, it is entirely defined by 2N − 1 nodes and 2N − 2 edges for a total of 4N − 3

elements. Comparing this to an asset VCV matrix, we have moved from a representation

complexity of O(N2) to O(N).



42 Y. D’HONDT, M. DI VENTI, A. GULATI, R. RISHI, AND J. WALKER

§D. Blending N Regime-Conditional Factor Models

Consider again the set-up from Section 4.4. Let ft,i ∼ N(µfi , Fi) where µfi are the

expected factor returns in state i. Next, allow for different factor sets for each regime, i.e.

ft,i ∈ RLi where the number of factors in state i, Li, and the set of factors is determined

by the factor selection and engineering procedures outlined above. Under the model spec-

ification from Eq. (3.2), we can now blend the expected return vectors and VCVs for any

N regimes. Let the asset expected excess return vector within a fixed state j be given by:

µj = αj +KT
j µfj (D.1)

Where the intercept (αj) and factor loadings Kj can be estimated for each asset through

OLS.

Then for an N -state model, the asset expected excess return vector and VCV conditional

on being in state i today are given by:

µ̂e
i =

N∑
j=1

γi,jµj (D.2)

Σ̂i =

N∑
j=1

γi,j(K
T
j FjKj +Dj) +

N∑
j=1

γi,j(1− γi,j)µjµ
T
j

−
N∑

k,j,k ̸=j

γi,kγi,jµkµ
T
j

(D.3)
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§E. Factor Model Evaluation Results

E.1. Wasserstein Distance

Wasserstein Distance

1 Regime 2 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(GRS)

GMMHMM

(Shapley)

GMMHMM

(Hierarchical)

GMMHMM

(RP-PCA)

20 Days 0.270 (0.036) 0.264 (0.071) 0.264 (0.071) 0.264 (0.071) 0.265 (0.071) 0.264 (0.071)

40 Days 0.255 (0.053) 0.252 (0.083) 0.251 (0.083) 0.251 (0.083) 0.252 (0.083) 0.252 (0.083)

62 Days 0.239 (0.049) 0.237 (0.080) 0.237 (0.080) 0.237 (0.080) 0.238 (0.080) 0.238 (0.080)

250 Days 0.201 (0.039) 0.200 (0.074) 0.200 (0.074) 0.200 (0.074) 0.201 (0.074) 0.200 (0.074)

500 Days 0.190 (0.036) 0.194 (0.073) 0.194 (0.074) 0.193 (0.074) 0.195 (0.073) 0.194 (0.073)

750 Days 0.185 (0.036) 0.191 (0.073) 0.191 (0.073) 0.191 (0.073) 0.192 (0.073) 0.192 (0.073)

Table 5.: Mean Wasserstein distance for different selection methods and different validation

window sizes, using 3,750 training days and a 62 day stride. Standard deviations are denoted

in brackets ().

Wasserstein Distance

1 Regime 3 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(GRS)

GMMHMM

(Shapley)

GMMHMM

(Hierarchical)

GMMHMM

(RP-PCA)

20 Days 0.270 (0.036) 0.262 (0.075) 0.271 (0.078) 0.263 (0.079) 0.265 (0.075) 0.261 (0.069)

40 Days 0.255 (0.053) 0.250 (0.085) 0.258 (0.086) 0.250 (0.088) 0.252 (0.084) 0.248 (0.080)

62 Days 0.239 (0.049) 0.236 (0.083) 0.244 (0.084) 0.236 (0.086) 0.239 (0.081) 0.234 (0.077)

250 Days 0.201 (0.039) 0.206 (0.081) 0.209 (0.082) 0.206 (0.086) 0.207 (0.078) 0.207 (0.075)

500 Days 0.190 (0.036) 0.200 (0.082) 0.204 (0.085) 0.199 (0.088) 0.201 (0.080) 0.201 (0.075)

750 Days 0.185 (0.036) 0.191 (0.069) 0.194 (0.070) 0.188 (0.074) 0.192 (0.066) 0.196 (0.075)

Table 6.: Mean Wasserstein distance for different selection methods and different validation

window sizes, using 3,750 training days and a 62 day stride. Standard deviations are denoted

in brackets ().
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Wasserstein Distance

1 Regime 2 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(Linear Boosting)

GMMHMM

(RP-PCA)

20 Days 0.270 (0.036) 0.264 (0.071) 0.264 (0.071) 0.265 (0.071)

40 Days 0.255 (0.053) 0.252 (0.083) 0.252 (0.083) 0.252 (0.083)

62 Days 0.239 (0.049) 0.237 (0.080) 0.238 (0.080) 0.238 (0.080)

250 Days 0.201 (0.039) 0.200 (0.074) 0.200 (0.074) 0.201 (0.074)

500 Days 0.190 (0.036) 0.194 (0.073) 0.194 (0.073) 0.195 (0.073)

750 Days 0.185 (0.036) 0.191 (0.073) 0.191 (0.073) 0.193 (0.073)

Table 7.: Mean Wasserstein distance for different engineering methods and validation win-

dow sizes, using 3,750 training days and a 62 day stride. Standard deviations are denoted

in brackets ().

Wasserstein Distance

1 Regime 3 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(Linear Boosting)

GMMHMM

(RP-PCA)

20 Days 0.270 (0.036) 0.262 (0.075) 0.261 (0.073) 0.272 (0.084)

40 Days 0.255 (0.053) 0.250 (0.085) 0.248 (0.082) 0.261 (0.092)

62 Days 0.239 (0.049) 0.236 (0.083) 0.235 (0.080) 0.247 (0.091)

250 Days 0.201 (0.039) 0.206 (0.081) 0.202 (0.080) 0.213 (0.089)

500 Days 0.190 (0.036) 0.200 (0.082) 0.195 (0.081) 0.209 (0.092)

750 Days 0.185 (0.036) 0.191 (0.069) 0.182 (0.064) 0.200 (0.081)

Table 8.: Mean Wasserstein distance for different engineering methods and different valida-

tion window sizes, using 3,750 training days and a 62 day stride. Standard deviations are

denoted in brackets ().
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E.2. Pearson Correlation on Returns

Pearson Correlation Between Expected and Realized Returns

1 Regime 2 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(GRS)

GMMHMM

(Shapley)

GMMHMM

(Hierarchical)

GMMHMM

(RP-PCA)

20 Days -0.014 (0.138) 0.051 (0.192) 0.052 (0.192) 0.052 (0.192) 0.053 (0.192) 0.052 (0.192)

40 Days 0.019 (0.136) 0.034 (0.187) 0.034 (0.187) 0.034 (0.187) 0.034 (0.187) 0.034 (0.187)

62 Days 0.026 (0.148) 0.053 (0.190) 0.053 (0.191) 0.053 (0.190) 0.053 (0.190) 0.053 (0.190)

250 Days 0.035 (0.172) 0.075 (0.200) 0.075 (0.200) 0.076 (0.199) 0.075 (0.200) 0.075 (0.199)

500 Days 0.033 (0.168) 0.092 (0.196) 0.091 (0.196) 0.092 (0.195) 0.093 (0.196) 0.092 (0.196)

750 Days 0.026 (0.151) 0.119 (0.190) 0.118 (0.191) 0.120 (0.189) 0.121 (0.189) 0.119 (0.190)

Table 9.: Mean Pearson correlation between expected and realized returns for different

selection methods and for different validation window sizes, using 3,750 training days and

a 62 day stride. Standard deviations are denoted in brackets ().

Pearson Correlation Between Expected and Realized Returns

1 Regime 3 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(GRS)

GMMHMM

(Shapley)

GMMHMM

(Hierarchical)

GMMHMM

(RP-PCA)

20 Days -0.014 (0.138) 0.019 (0.173) 0.037 (0.181) 0.039 (0.176) 0.037 (0.166) 0.050 (0.171)

40 Days 0.019 (0.136) 0.012 (0.182) 0.032 (0.182) 0.021 (0.185) 0.023 (0.182) 0.042 (0.184)

62 Days 0.026 (0.148) 0.035 (0.179) 0.071 (0.181) 0.048 (0.179) 0.044 (0.176) 0.059 (0.183)

250 Days 0.035 (0.172) 0.064 (0.178) 0.052 (0.177) 0.062 (0.187) 0.062 (0.183) 0.070 (0.188)

500 Days 0.033 (0.168) 0.108 (0.197) 0.079 (0.190) 0.112 (0.175) 0.085 (0.175) 0.101 (0.205)

750 Days 0.026 (0.151) 0.143 (0.172) 0.121 (0.172) 0.159 (0.161) 0.128 (0.158) 0.145 (0.182)

Table 10.: Mean Pearson correlation between expected and realized returns for different

selection methods and for different validation window sizes, using 3,750 training days and

a 62 day stride. Standard deviations are denoted in brackets ().
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Pearson Correlation Between Expected and Realized Returns

1 Regime 2 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(Linear Boosting)

GMMHMM

(RP-PCA)

20 Days -0.014 (0.138) 0.051 (0.192) 0.051 (0.193) 0.052 (0.193)

40 Days 0.019 (0.136) 0.034 (0.187) 0.033 (0.187) 0.034 (0.187)

62 Days 0.026 (0.148) 0.053 (0.190) 0.053 (0.190) 0.053 (0.191)

250 Days 0.035 (0.172) 0.075 (0.200) 0.075 (0.200) 0.075 (0.200)

500 Days 0.033 (0.168) 0.092 (0.196) 0.092 (0.196) 0.091 (0.196)

750 Days 0.026 (0.151) 0.119 (0.190) 0.120 (0.190) 0.119 (0.190)

Table 11.: Mean Pearson correlation between expected and realized returns for different

engineering methods and for different validation window sizes, using 3,750 training days

and a 62 day stride. Standard deviations are denoted in brackets ().

Pearson Correlation Between Expected and Realized Returns

1 Regime 3 Regimes

Validation

Window

Static

USFM

GMMHMM

(None)

GMMHMM

(Linear Boosting)

GMMHMM

(RP-PCA)

20 Days -0.014 (0.138) 0.019 (0.173) 0.028 (0.174) 0.017 (0.197)

40 Days 0.019 (0.136) 0.012 (0.182) 0.019 (0.185) -0.001 (0.189)

62 Days 0.026 (0.148) 0.035 (0.179) 0.044 (0.176) 0.033 (0.188)

250 Days 0.035 (0.172) 0.064 (0.178) 0.082 (0.176) 0.055 (0.184)

500 Days 0.033 (0.168) 0.108 (0.197) 0.101 (0.176) 0.091 (0.184)

750 Days 0.026 (0.151) 0.143 (0.172) 0.137 (0.157) 0.126 (0.177)

Table 12.: Mean Pearson correlation between expected and realized returns for different

engineering methods and for different validation window sizes, using 3,750 training days

and a 62 day stride. Standard deviations are denoted in brackets ().
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§F. Model Introspection: Selected Factors

Factor Description Theme Sign
Mkt-RF*ˆ Market Excess Returns - Sharpe(1964) N/A 1
debt gr3ˆ Growth in book debt (3 years) - Lyandres, Sun, and Zhang

(2008)
Debt Insurance -1

col gr1aˆ Change in current operating liabilities - Richardson et al. (2005) Investment -1
ppeinv gr1aˆ Change PPE and Inventory - Lyandres et al. (2008) Investment -1
at me* Total Assets scaled by Market Equity – Fama and French (1992) Value 1
be me* Book-to-market equity - Rosenberg, Reid, and Lanstein (1985) Value 1
bev mev* Book Enterprise Value scaled by Market Equity Value – Penman Value 1
debt me* Debt-to-market – Bhandari (1988) Value 1
div 12m me* Dividend yield – Litzenberger and Ramaswamy (1979) Value 1
eqnpo 12m*ˆ Equity net payout – Daniel and Titman (2006) Value 1
eqpo meˆ Payout yield - Boudoukh et al. (2007) Value 1
fcf meˆ Free cash flow-to-price - Lakonishok et al. (1994) Value 1
sale me* Sales-to-market - Barbee, Mukherji, and Raines (1996) Value 1
ageˆ Firm age - Jiang, Lee, and Zhang (2005) Low Leverage -1
at beˆ Book leverage - Fama and French (1992) Low Leverage -1
netdebt meˆ Net debt-to-price - Penman, Richardson, and Tuna (2007) Low Leverage -1
ni ivolˆ Earnings Volatility -Francis et al. (2004) Low Leverage 1
tangibilityˆ Asset tangibility - Hahn and Lee (2009) Low Leverage 1
zero trades 126d*ˆ Zero trades with turnover as a tiebreak (6 months) – Liu (2006) Low Risk 1
ivol capm 21d* Idiosyncratic volatility over a 21-day period from CAPM – Fran-

cis et Al. (2004)
Low Risk -1

ivol ff3 21d* Idiosyncratic volatility from the Fama-French 3-factor model –
Ang et al. (2006)

Low Risk -1

rmax5 21d* Highest 5 days of return - Bali, Brown, Murray and Tang (2017) Low Risk -1
rvol 21d* Return volatility – Ang, Hodrick, et Al. Low Risk -1
turnover 126d* Share turnover 6 months – Datar, Naik, and Radcliffe (1998) Low Risk -1
zero trades 252d* Zero trades with turnover as a tiebreak (12 months) – Liu (2006) Low Risk 1
prc highprc 252dˆ Current price to high price over last year - George and Hwang

(2004)
Momentum 1

ret 6 1ˆ Price momentum t-6 to t-1 - Jegadeesh and Titman (1993) Momentum 1
dsale drecˆ Change sales minus change receivables - Abarbanell and Bushee

(1998)
Profit Growth 1

sale emp gr1ˆ Labor force efficiency - Abarbanell and Bushee (1998) Profit Growth 1
ope bel1ˆ Operating profits-to-lagged book equity - Fama and French

(2015)
Profitability 1

cop atˆ Cash-based operating profits-to- book assets Quality 1
cop atl1ˆ Cash-based operating profits-to-lagged book assets - Nikolaev et

al. (2016)
Quality 1

mispricing perfˆ Mispricing factor: Performance - Stambaugh and Yuan (2017) Quality 1
niq atˆ Quarterly return on assets - Balakrishnan, Bartov, and Faurel

(2010)
Quality 1

at turnover* Capital turnover - Haugen and Baker (1996) Quality 1
gp at* Gross Profits-to-Assets – Novy-Marx (2013) Quality 1
gp atl1* Gross Profit scaled by lagged Assets – Novy-Marx (2013) Quality 1
op atl1* Operating profits-to-lagged book assets – Ball et Al. (2016) Quality 1
coskew 21dˆ Coskewness - Harvey and Siddique (2000) Seasonality -1
pi nixˆ Taxable income-to-book income - Lev and Nissim (2004) Seasonality 1
seas 11 15naˆ Years 11-15 lagged returns, non-annual - Heston and Sadka

(2008)
Seasonality -1

seas 2 5anˆ Years 2-5 lagged returns, annual - Heston and Sadka (2008) Seasonality 1
seas 6 10anˆ Years 6-10 lagged returns, annual - Heston and Sadka (2008) Seasonality 1
sti gr1aˆ Change in short-term investments - Richardson et al. (2005) Seasonality 1
ret 1 0ˆ Short-term reversal - Jegadeesh (1990) Short Term Reversal -1

Table 13.: Set of factors selected in the example use cases of Section 8. Shapley-selected

factors are indicated with a star (*) and GRS-selected factors with a hat (ˆ). All factors are

provided in the online resources to Jensen, et al. [26]. Sign indicates whether the high tercile

of the characteristic is long (1) or short (-1) in the long-short tercile portfolio constructing

the factor return.
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